Appearance
ba=1
12a⋅1=12
a=1
b=1
C:x2−y2=1
M(x1,y1),N(x2,y2),G(x2,yG),A(1,0)
kMA=kGA
y1x1−1=yGx2−1
yG=y1(x2−1)x1−1
H(x2,12y2+12y1(x2−1)x1−1)
kAH=12[y2+y1(x2−1)x1−1]x2−1
=12[y2x2−1+y1x1−1]
设直线 l:y−1=k(x−1)
y=kx−k+1
所以 kAH=12(kx2−k+1x2−1+kx1−k+1x1−1)
=12[k+1x2−1+k+1x1−1]
12[2k+x1+x2−2(x1−1)(x2−1)]
设{x2−y2=1,x2−y2−1=0y=kx+1−k,设1−k=m,y=kx+m
x2−(k+m)2−1=0
(1−k2)x2−2kmx−m2−1=0
x1+x2=2km1−k2=2k(1−k)1−k2=2k−2k21−k2
(x1−1)(x2−1)=1−k2−2km−m2−11−k2=−k2−2km−m21−k2=−(k+m)21−k2
=−11−k2
所以 kAH=12[2k+2k−2k2−2+2k2−1]
=12[2k−2k+2]
=1
TIP
一根竖线上,有 3 个点且有个中点。那么找一个定点 P,
P 点到中点的斜率也等于 P 到另外两个点的斜率之和的一半。
P(xp,yp)
A(x0,y1)
B(x0,y1+y22)
C(x0,y2)
kPA=y1x0−xp
kPB=y1+y22(x0−xp)
kPC=y2x0−xp