Appearance
2c=2,c=1
ca=22
2a=2
a=2,b=1
E:x22+y2=1
M(−2,−1),F(−1,0),A(x1,y1),B(x2,y2)
|MA||BF|=|MB||AF|
|MA||MB|=|AF||BF|
y1+1y2+1=−y1y2
y1y2+y2=−y1y2−y1
2y1y2+y1+y2=0
设 lAB:x=y−1
{x22+y2=1x=y−1
3y2−2y−1=0
y1y2=−13,y1+y2=23
所以 |MA|⋅|BF|=|MB|⋅|AF|
设 lAB:x=my−1
{x22+y2=1x=my−1
(m2+2)y2−2my−1=0
y1y2=−1m2+2,y1+y2=2mm2+2
M 点:x=−2 时,−2=my−1,y=−1m
M(−2,−1m)
设 lND:x=m2y−1,m2=−1m
同理,N(−2,−1m2)
设 C(x3,y3),D(x4,y4)
|MA|=1+m2|y1+1m|=1+m2|1+my1m|
|MB|=1+m2|y2+1m|=1+m2|1+my2m|
|NC|=1+m22|y3+1m2|
|ND|=1+m22|y4+1m2|
所以 1MA+1MB=MA+MBMA⋅MB
=m2+1|2+m(y1+y2)m|(m2+1)(my1+1)(my2+1)m2
=m2+1m2+12+2m2m2+2mm2(my1+)(my2+1)
=m2+1m2+14m2+4(m2+2)mm2(my1+1)(my2+1)
=4m2+1(m2+2)mm2m2y1y2+m(y1+y2)+1
=4m2+1m2+2m−m2m2+2+2m2m2+2+1
=4m2+1m2+2m(m2+2)2m2+2
=4m2+12(m2+1)=2m2+1
同理,1|NC|+1|ND|=2m22+1=21m2+1
=2m2m2+1
求求=2m2+1+2|m|m2+1
=21+|m|m2+1
=21+2|m|+m2m2+1
=21+2|m|m2+1=21+2|m|+1|m|⩽21+22=22,当 m=±1 时取等。
TIP